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CHAPTER 2

INTRODUCTION

1.  METALS AND METALLIC COMPOUNDS
There are a number of metals and metallic compounds present in electronic 
devices including lead, cadmium, arsenic, mercury as well as gold, gallium, 
indium arsenic, selenium, and antimony (Leung, Duzgoren-Aydin, Cheung, 
& Wong, 2008; Wong, Duzgoren-Aydin, Aydin, & Wong, 2007; Zheng et al., 
2013). Some of these elements are highly valuable and extensive efforts 
are expended to recover them by recyclers, but others such as lead, cad-
mium, arsenic, and mercury are less valuable and may not be recovered 
and released into the environment with the resultant human exposures in 
air, food, and water (Sepúlveda et al., 2010; Wong, Duzgoren-Aydin, et al., 
2007). These exposures may hence occur as mixtures of these elements (Cui 
& Zhang, 2008; Robinson, 2009). The types of effects resulting from mix-
tures of metallic compounds have been studied in both in vivo (Conner, 
Yamauchi, & Fowler, 1995; Goering, Maronpot, & Fowler, 1988; Mahaffey, 
Capar, Gladen, & Fowler, 1981; Whittaker et al., 2011) and in vitro (Aoki 
et al., 1990; Bustamente, Dock, Vahter, Fowler, & Orrenius, 1997; Fowler, 
Conne, & Yamauchi, 2005, 2008; Madden & Fowler, 2000, 2002) test systems. 
In addition, it is important to note that e-waste materials also contain plas-
tics and a number of toxic organic chemical compounds (Robinson, 2009; 
Wong, Wu, et al., 2007), and possible interactions between metallic and 
organic constituents of e-waste must also be considered in any risk assess-
ment approach for populations exposed to chemicals released from e-waste. 
The increasing use of nanomaterials in the fabrication of electronic devices 
(Caballero-Guzman, Sun, & Nowack, 2015) adds another level of complexity 
to any risk assessment for populations exposed to e-waste chemicals during 
recycling processes or released as a result of disposal of electronic devices into 
landfills or water bodies used for drinking or production of fishery products 
for human consumption. A more extensive discussion of the mechanisms 
of toxicity at the cellular level from exposure to a number of these chemical 
entities on an individual or mixture basis is provided below.

Metals, Metallic Compounds, Organic 
Chemicals, and E-Waste Chemical Mixtures
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2.  NANOMATERIALS
In the quest to produce smaller, lighter, and faster electronic devices, electronic 
manufacturers have moved increasingly to nanomaterial-based semiconduc-
tors such as particles made of indium arsenide, indium phosphide, and cad-
mium selenide (Heeres et al., 2007; Landi et al., 2005; Mushonga, Onani, 
Madiehe, & Meyer, 2012). In addition to metallic nanomaterials, organic 
nanomaterials containing chemicals derived from plastics (Zhuo & Levendis, 
2014) should also be evaluated from a chemical safety perspective. While the 
behavior of nanomaterials released into the environment has received some 
attention to date (Klaine et al., 2008; Lowry, Gregory, Apte, & Lead, 2012; 
Vejerano, Leon, Holder, & Marr, 2014; Walser et al., 2012), further research 
is clearly needed to assess potential health effects of nanomaterials released 
into the environment in relation to open air recycling of this new generation 
of electronic devices containing these materials. Monitoring flows of both 
metallic and organic nanomaterials through the recycling process (Caballero-
Guzman et al., 2015) is clearly an excellent idea from the perspective of both 
occupational and environmental risk assessment. This is an important and 
still unresolved area of public health research since it incorporates multime-
dia exposures, populations at special risk such as children in relation to occu-
pational exposures, and, potentially, dispersion of nanoparticles over large 
areas.

3.  REPRESENTATIVE ORGANIC E-WASTE CHEMICALS
As noted above, e-waste is chemically composed of both inorganic and 
organic chemicals, which each have their own toxic properties on both an 
individual or mixture basis. These potential interactive effects are further 
complicated by the issue of child labor involvement in recycling activities in 
developing countries. The exposure of children to e-waste chemicals during 
development may lead to latent health effects such as diabetes or cancer 
later in life (Heindel, 2003; Jirtle & Skinner, 2007; Perera & Herbstman, 
2011; Skinner, Manikkam, & Guerrero-Bosagna, 2011). Common chemicals 
such as bisphenol A (BPA) (Huang, Zhao, Liu, & Sun, 2014; Matsukami 
et al., 2015), PBBs, PCBs, PBDEs (Zhao et al., 2009), and styrene (Kiran, 
Ekinci, & Snape, 2000) are well-known toxic chemicals that are used in 
the production of electronic devices. Human exposures may occur to these 
chemicals during recycling via open-pit burning of wiring and circuit boards 
and incineration of plastic composite computer housings. The overall point 
is that open-pit incineration of old electronic devices will release a number 
of toxic chemicals to which persons may be exposed. These chemicals have 
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been shown to include a number of PAHs and PCBs as well as a number 
of the toxic metals noted above (Tang et al., 2014). In addition, a num-
ber of other persistent organic pollutants such as PBDEs, PBBs, dibenzo-
dioxins, and dibenzofurans tetrabromo BPA compounds (Ni, Zeng, Tao, 
& Zeng, 2010; Shen et al., 2009) may be released from electronic devices 
during recycling activities. A number of these chemicals have been linked 
to obesity (Heindel & vom Saal, 2009) and metabolic diseases such as type 
II diabetes (Heindel & vom Saal, 2009), which may occur via disruption 
of endocrine regulatory pathways (Heindel & vom Saal, 2009). The main 
point here is that there are a large number of toxic organic chemicals pres-
ent in these e-waste recycling sites in addition to toxic metallic compounds. 
E-waste recycling sites are hence prime examples of organic/metallic chem-
ical mixture exposure situations in both occupational and environmental 
contexts and may cause important health outcomes. The issue of e-waste 
chemical mixtures and interactions between chemicals in relation to public 
health risk assessments is discussed in the following sections.

4.  CHEMICAL MIXTURES EXPOSURES IN E-WASTE 
RECYCLING

As noted above, human exposure to chemicals in e-waste materials will 
occur as chemical mixtures. These exposures will occur from combinations 
of a number of metallic compounds and common organic chemicals/plas-
tics released during open-pit burning and dumping not only into arable 
soils used for growing crops but also into rivers, lakes, and shallow water 
embayments used for harvesting edible fish and shellfish. Human expo-
sures to these chemicals may hence occur via a number of routes over the 
lifetime of individuals living in e-waste recycling areas. Since a number of 
these chemicals are capable of crossing the placenta, the exposures may 
occur prior to conception, through embryogenesis and fetal development 
leading to health effects that manifest themselves later in life (Grant et al., 
2013) due to altered cellular imprinting (Murphy & Jirtle, 2003; Wilkinson, 
Davies, & Isles, 2007). In general, interactions among chemicals may occur 
as additive, antagonistic, or synergistic in nature (Fowler et al., 2005, 2008; 
Mahaffey et al., 1981; Fig. 2.1) and are not always easily predicable. Further 
complicating matters is the increasing use of nanomaterials in the produc-
tion of electronic devices (Cui & Lieber, 2001; Miao, Miyauchi, Simmons, 
Dordick, & Linhardt, 2010). These materials may greatly alter the absorp-
tion, distribution, and elimination of their constituent chemical compo-
nents, thus further complicating risk assessment predictions.
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5.  RISK ASSESSMENT APPROACHES FOR E-WASTE
Given the growing, unique, and evolving nature of the global e-waste prob-
lem, it would appear that traditional approaches to chemicals risk assess-
ment will not be sufficient to protect humans or the environment from the 
untoward effects of chemicals released from e-waste materials during recy-
cling activities. This is particularly true for recycling processing conducted 
in developing countries with few, if any, environmental or occupational 
safeguards or child labor laws. Clearly, the challenges of e-waste recycling 
require the application of newer risk assessment methods capable of eval-
uating the effects of novel inorganic and organic e-waste chemicals on an 
individual and mixture basis in populations at special risk in developing 
countries. These populations may be defined on the basis of age (Fowler, 
2013a), gender (Fowler et al., 2005), genetic inheritance (Scinicariello 
et al., 2007; Fig. 2.2), and nutritional status (Heindel & vom Saal, 2009), 
resulting in the need for risk assessment approaches capable of integrating 
these disparate factors to provide credible mode of action (MOA)–based 
guidance that will hopefully ultimately lead to the development of person-
alized risk assessment evaluations for sensitive subpopulations at special 
risk for adverse outcomes.
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FIGURE 2.1
Urinary porphyrin excretion patterns from rats exposed to inorganic arsenic (As), lead (Pb), cadmium, or 
organic arsenic compounds (OAs) as arsanilic acid on an individual or mixture basis. Interactions Fowler, 
B. A., & Mahaffey, K. R. (1978). Interaction between lead, cadmium and arsenic in relation to porphyrin 
excretion patterns. Environmental Health Perspectives, 25, 87–90.
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Fortunately, there are a number of modern toxicological tools such as molecular 
biomarkers and computational methodologies that have evolved over the past 
20 years, which may be able to address these complex issues if properly applied.

5.1  Molecular Biomarkers
A prior book in this series (Fowler, 2016) has provided an overview of some 
ways in which molecular biomarkers could be applied to provide more pre-
cise risk assessments for chemical exposures arising from e-waste recycling. 
Biomarker test batteries are becomingly increasingly automated and less 
expensive so that they may become available for general screening of chemical 
toxicity in developing countries where a large proportion of e-waste recycling is 
currently centered (Sthiannopkao & Wong, 2013). There are an increasing array 
of molecular biomarkers, which include genomic, proteomic, and metabolo-
mics biomarkers, which are discussed in more detail elsewhere (Fowler, 2016). 
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These biomarkers either alone or in combination can provide useful insights 
into mechanisms of toxic chemical action and hence help to support MOA risk 
assessment practice (Cote et al., 2016).

5.2  Computational Toxicology Methodologies
A second essential component for providing cost-effective personalized risk 
assessments for e-waste chemical exposures is the application of computa-
tional toxicology methods capable of integrating large quantities of diverse 
data to generate an overall risk assessment picture of likely adverse health 
outcomes in exposed populations at special risk. Such credible information 
is necessary to formulate wise regulatory decisions. Fortunately, the field 
of computational toxicology has also evolved in recent years. A relatively 
recent summary of this field and its potential applications has been pub-
lished (Fowler, 2013b) as a component of the present three-part series on 
the application of modern tools of toxicology to risk assessment practice. 
An example of the value of computational toxicology as a tool in helping 
to drive MOA risk assessment is via digital image analysis of 2D gels from 
male or female hamsters exposed to gallium arsenide or indium arsenide 
particles (Fowler et al., 2005). The images were converted into tabular for-
mats and clearly show marked gender-specific differences in response pat-
terns with regard to gallium arsenide or indium arsenide particles at equal 
dose levels (see Tables 2.1 and 2.2). These data highlight the value of com-
putational techniques in supporting risk assessments for chemical mixtures 
on a gender-specific basis. This book is the third volume in this series and 
represents a real-world case study of how the information in the first two 
volumes could be applied for addressing the complex and growing problem 
of e-waste with particular emphasis on the public health aspects.

6.  PUBLIC HEALTH IMPLICATIONS AND DIRECTIONS 
FORWARD

It is clear from the above summary that unregulated releases of toxic met-
als from e-waste recycling are occurring and that human exposures from 
air, food, and water are occurring. This situation is further complicated by 
exposures of children in developing countries without child labor laws and 
the expanded application of nanomaterials in electronic devices, which can 
only increase environmental dispersions and exposures of humans and other 
biota.

6.1  The Current Situation
Based on the brief review of the various aspects of the global e-waste problems 
stated above, it is clear that there is a growing public health problem with human 
exposures to chemicals, such as toxic metals, derived from unregulated recycling 
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Table 2.1 Polypeptides That Exhibit Modulation 30 Days Following Exposure 
to InAs and GaAs in Hamster Kidney Proximal Tubule Cells

MW Range
Common Spot 
Numbera InAsb GaAsb

100–90 1 1.0 2.1c

18 1.0 0.7
89–70 2 – –

12 – 1.1
69–50 3 0.90 4.0c

11 – 1.2
22 – –
23 – –
25 – –
32 – –

49–40 10 0.85 1.8
16 1.2 1.6
26 – –
28 – –

39–30 4 0.79 2.0c

5 1.8 0.5c

6 – 0.1c

7 – 0.3c

8 1.5 3.6c

13 0.9 0.1c

14 0.72 0.6
15 1.2 1.7
17 0.74 2.4c

19 – –
20 – –

29–20 30 – –

31 – –

MW, molecular weight.
aSpot number denoted on gel.
bSpot intensity expressed as the ratio of treatment/control.
cDenotes polypeptides differing by twofold or greater (increasing or decreasing).
From Fowler, B. A., Conner, E. A., & Yamauchi, H. (2008). Proteomic and metabolomic bio-
markers for III-V semiconductors: And prospects for application to nano-materials. Toxicology 
and Applied Pharmacology, 233(1), 110–115. http://dx.doi.org/10.1016/j.taap.2008.01.014.

of electronic devices, which is centered in a number of developing countries. 
These countries generally do not have the resources or political will to put in 
place needed regulatory guidelines for protecting the health of citizens dealing 
with e-waste materials. A key element in improving this situation is the availabil-
ity of sound scientific information to inform regulatory decision-making.

http://dx.doi.org/10.1016/j.taap.2008.01.014
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Table 2.2 Polypeptides That Exhibit Modulation 30 Days Following InAs or 
GaAs in Female Hamster Kidney Proximal Tubule Cells

MW Range
Common Spot  
Numbera InAsb GaAsb

100–90 1 0.92 0.96
18 0.56 0.17c

29 0.71 0.37c

89–70 2 6.60c 5.50c

12 0.47c 1.20
69–50 3 0.68 1.10

11 0.51 0.96
22 0.32c 0.78
23 0.31c 0.83
24 0.26c 0.64
25 0.26c 1.26
32 0.90 0.96

49–40 10 0.43c 0.90
16 2.50c 0.57
26 0.58 0.45c

27 – 1.60
28 – 10.0c

33 – 1.40
34 0.43c 0.57

39–30 4 – –
5 2.00c 1.20
6 0.14c 0.70
7 0.32c 0.61
8 0.39c 0.50

13 0.47c 1.20
14 0.37c 1.00
15 0.76 1.25
17 1.00 0.96
19 0.20c 1.1
20 – 0.50

≤29 30 0.84 0.76

31 0.54 0.68

MW, molecular weight.
Thirty-one polypeptides were affected by both InAs or GaAs. The synthesis of 16 polypeptides 
was altered by InAs by twofold or greater with the synthesis of 3 increasing, 13 decreasing, 
and 4 absent. After GaAs treatment, 50% of the polypeptides were synthesized at or near 
control levels. Five polypeptides were changed by twofold or greater, the synthesis of two 
increased, three decreased, and one was absent.
aSpot number denoted on gel.
bSpot intensity expressed as the ratio of treatment/control.
cDenotes polypeptides differing by twofold or greater (increasing or decreasing).
From Fowler, B. A., Conner, E. A., & Yamauchi, H. (2008). Proteomic and metabolomic biomarkers  
for III-V semiconductors: And prospects for application to nano-materials. Toxicology and 
Applied Pharmacology, 233(1), 110–115. http://dx.doi.org/10.1016/j.taap.2008.01.014.

http://dx.doi.org/10.1016/j.taap.2008.01.014
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6.2  Directions Forward
To make progress on this complex problem area and protect the health of the envi-
ronment and the public, a number of elements need to be organized in concert.

 1.  Training and resources need to be marshaled to provide recycling 
environments that are more efficient and protect the workers and 
minimize releases of toxic chemicals from electronic devices during the 
recycling process.

 2.  Occupational and environmental laws need to be strengthened to 
encourage safe recycling practices in developing countries.

 3.  Financial incentives in the form of tax breaks or subsidies need to 
be provided to companies engaged in the manufacture or recycling 
of electronic devices to encourage safe recycling and/or refurbishing 
practices.

 4.  The utilization of modern approaches to toxicology and risk assessment 
should be included for evaluation of chemical safety during any phase 
of e-waste handling to assure that public health is being protected for 
the most sensitive segments of the population.

 5.  To be effective and have an impact on public health in developing 
countries engaged in e-waste recycling, the proposed newer methods 
must be affordable and cost-effective in developing countries to 
have an impact on public health issues related to e-waste chemicals. 
Fortunately, the costs of these evolving tests are declining every year 
due to incorporation of computer-managed analytical and data 
management systems. It is reasonable to expect that such evaluations 
will be practical in even remote areas via incorporation of satellite 
data telemetry systems to communicate biomarker-based risk 
assessment data to risk assessors located in more centralized urban 
locations.

7.  SUMMARY AND CONCLUSIONS
From the above discussion, it is clear that metallic elements play essential 
roles in modern electronic devices and are hence important components of 
e-waste streams. Some of these elements such as gold are regarded as precious 
metals and there is considerable effort exerted to recover them. Other metals 
such as indium and gallium are not only valuable components of semicon-
ductors but also show considerable toxic potential. Elements such as arsenic, 
cadmium, lead, and mercury are well-known toxicants but financially less 
valuable, so less effort is exerted to recover them and hence they frequently 
find their way into air, food, and water where they may produce toxicity on 
an individual or mixture basis. From the risk assessment perspective, the 
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situation for metallic elements as a class in e-waste is complicated in terms of 
conducting an accurate evaluation.

This situation is further complicated by concomitant exposures to organic 
chemicals such as those released by burning insulation from copper wiring 
and combustion of plastics and flame retardant chemicals. The issue of chem-
ical interactions between metals and organic chemicals in mixture situations 
is difficult from a risk assessment perspective since these agents may affect dif-
ferent pathways leading to cell injury/cell death or cancer outcomes. In addi-
tion, there are biological factors that should be considered in conducting more 
accurate risk assessments for populations exposed to chemicals released from 
e-waste recycling activities in developing countries. These include age—the 
developing fetus exposed to chemicals capable of crossing the placenta, chil-
dren working in e-waste recycling activities—gender, and intrinsic differences 
in susceptibility to metal toxicity (Fowler et al., 2005, 2008), and nutritional 
status. Persons with poor nutritional status are generally less resistant to the 
effects of toxic chemicals than persons with good nutritional status (Heindel 
& vom Saal, 2009). Other biological factors such as the presence of infectious 
diseases (Ortiz et al., 2002) may also play a role in health outcomes since 
a number of e-waste chemicals produce immune-suppressive effects (Luster 
et al., 1992). Finally, there is the impact of low socioeconomic status (SES) 
itself on susceptibility to chemical-induced diseases (Friedman & Lawrence, 
2002). Low SES is a major driver for persons in developing countries to engage 
in the unregulated recycling of e-waste. It is well known that low SES itself is 
major determinant of decreased longevity (Bassuk, Berkman, & Amick, 2002) 
for a complex set of reasons, and the impact of this factor coupled with expo-
sure to e-waste chemicals should be considered in future risk assessment par-
adigm. A diagrammatic overview representation of such an integrative risk 
assessment approach is presented in Figs. 2.3 and 2.4.
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FIGURE 2.3
A diagrammatic representation of a possible integrative risk assessment paradigm for evaluating potential 
health effects from e-waste chemicals in susceptible populations in developing countries.
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FIGURE 2.4
Diagammatic approach for conducting risk assessments on e-waste chemical mixture exposures among 
human populations in developing countries.
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