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CHAPTER 3

Toxicology of E-Waste  
Chemicals—Mechanisms of Action

INTRODUCTION

1.  TOXIC METALS/METALLOIDS
Electron waste contains a number of toxic chemicals, which can be divided 
into metallic elements and organic chemicals. A number of these agents have 
been extensively studied, and there is solid toxicological database for under-
standing their potential hazard. Others have not been so well studied, and 
there is the issue of mixture exposures. Each general category of e-waste chem-
icals has its own special set of concerns with regard to knowledge base and 
hence being amenable to mode of action (MOA) risk assessment approaches. 
This first section of this chapter will focus on toxic metals and metalloids on 
an individual or compound basis since both may be present in e-waste mate-
rials. It should be noted here that some of these elements such as gold and 
indium are valuable, leading to extensive efforts for their recovery. Other toxic 
elements such as lead, cadmium, chromium, and arsenic are less valuable and 
may be released in both occupational exposures and into the general envi-
ronment. Plastics and organic chemicals in electronic devices, such as those 
incorporated into electronics as fire retardants, are less valuable and frequently 
released during the recycling process. This is a particularly important issue in 
developing countries with limited resources for occupational or environmental 
protection. Finally, the chapter will attempt to briefly summarize the sources 
of exposures and mechanisms of toxicity for some of the known major toxic 
inorganic and organic e-waste chemicals and highlight populations at special 
risk for toxic outcomes.

1.1  Lead
Lead, with atomic number 82, whose toxic properties have been known for 
centuries (NAS/NRC, 1993) has been used as shielding in cathode ray tubes 
(Herat, 2008) and solders for circuit boards (Li, Lu, Guo, Xu, & Zhou, 2007; 
Suganuma, 2001). Humans could be exposed to lead dust from the destruc-
tion of these common e-waste components via lead-containing dust and lead 
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fumes from breakage and incineration activities (Wong et al., 2007). This is a 
particular issue for the fetus, children, and women of childbearing age (Meyer, 
Brown, & Falk, 2008); however, all age groups and a number of organ systems 
including the nervous system, kidneys, blood-forming organs, reproductive sys-
tems (Needleman, 2004), and the cardiovascular system(Navas-Acien, Guallar, 
Silbergeld, & Rothenberg, 2007) may be affected. Nutritional status (Hsu & 
Guo, 2002) and genetic inheritance (Onalaja & Claudio, 2000; Scinicariello, 
Yesupriya, Chang, & Fowler, 2010) may also play important roles in defining 
sensitive subpopulations at special risk for toxicity.

The mechanisms of lead toxicity in target organs seem to be complex and mark-
edly influenced by the handling of this element by the skeleton (NAS/NRC, 
1993) and intracellular lead-binding proteins (Fowler, 1998) and intranuclear 
inclusion bodies at elevated exposure levels (Oskarsson & Fowler, 1985a). The 
biologically available intracellular fraction of lead may interact with a number 
of organelle systems including the nucleus, mitochondria, and cytosolic frac-
tions (Oskarsson & Fowler, 1985a,b) with resultant perturbations of a number 
of essential cellular functions (Oskarsson & Fowler, 1985b; Shelton, Todd, & 
Egle, 1986).

1.2  Cadmium
Cadmium is another toxic element used in semiconductor industry in solders 
(Dolzhnikov et al., 2015) and more recently in II–VI semiconductor materi-
als (Adachi, 2009). This element has been classified as a Class I carcinogen by 
IARC (2006) and (Waalkes, 2000) is well known to produce toxicity in kidneys 
(Nordberg, Fowler, & Nordberg, 2015), the skeleton (Takebayashi, Jimi, Segawa, 
& Kiyoshi, 2000), and reproductive organs (Akinloye, Arowojolu, Shittu, & 
Anetor, 2006; Thompson & Bannigan, 2008) via a number of direct and indi-
rect mechanisms (Fowler, 2009; Klaassen, Liu, & Diwan, 2009; Prozialeck, 2000; 
Waisberg, Joseph, Hale, & Beyersmann, 2003). All age groups may be susceptible 
but females (Nishijo, Satarug, Honda, Tsuritani, & Aoshima, 2004; Ruiz, Mumtaz, 
Osterloh, Fisher, & Fowler, 2010; Tellez-Plaza, Navas-Acien, Crainiceanu, Sharrett, 
& Guallar, 2010; Vahter, Åkesson, Lidén, Ceccatelli, & Berglund, 2007), multip-
arous postmenopausal women (Bhattacharyya, 1991; Kazantzis, 2004), and the 
elderly (Fowler, 2013a) seem to be at special risk for adverse outcomes. The cys-
teine-rich protein metallothionein (MT) plays a major role in the handling of 
cadmium in tissues. This protein exists as a number of isoforms, which vary 
between various tissues (Cherian, Jayasurya, & Bay, 2003; Thirumoorthy, Sunder, 
Kumar, Ganesh, & Chatterjee, 2011). In general, MT appears to modulate both 
the transport of Cd in the circulation and the intracellular bioavailability of Cd 
within cells (Squibb, Pritchard, & Fowler, 1984). Once the intracellular binding 
capacity of MT is exceeded and Cd2+ ions are available to interact with sensitive 
sites, more overt manifestations of cell death are initiated (Squibb et al., 1984). 
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Cadmium is also a potent initiator of oxidative stress via generation of reac-
tive oxygen species (ROS) (Szuster-Ciesielska et al., 2000; Wang, Fang, Leonard, 
& Rao, 2004). These ROS are capable of altering normal signaling pathways 
and produce a number of effects on hormone systems such as those involved 
in reproduction (Chedrese, Piasek, & Henson, 2006; Safe, 2003; Takiguchi & 
Yoshihara, 2005). The mechanisms involved in these effects are complex since 
cadmium itself should not catalyze Fenton chemistry, and hence interference 
with cellular oxidation/reduction systems and/or depletion of intracellular anti-
oxidant systems are more likely the causes.

1.3  Arsenic
The element arsenic, which is found in a wide variety of electronic devices, 
is of particular concern, and it is not as valuable as some of the other ele-
ments discussed below, so efforts to recover it during recycling are less rigor-
ous. This element, which exists in three main oxidation states (+/−3, +5), may 
be volatilized by high temperatures creating both potential occupational and 
environmental hazards (Fawcett & Jamieson, 2011; Henke, 2009). These main 
oxidation states vary in their acute toxic potential (Fowler, 2013b). In addition, 
inorganic arsenicals may be methylated to form a variety of methylated spe-
cies (monomethyl arsenic acids, dimethyl arsenic acids, and trimethyl arsines), 
which also vary in their relative toxicity (Fowler, 2015; Styblo et al., 2000), and 
it is possible that intracellular toxicity may be due in part to metabolic inter-
conversions among these methylated species (Aposhian, Zakharyan, Avram, 
Sampayo-Reyes, & Wollenberg, 2004; Thomas et al., 2007). The mechanisms 
by which arsenicals produce toxicity seem to be largely centered around effects 
on inhibition of cellular respiration (Samikkannu et al., 2003) with resultant 
generation of ROS (Samikkannu et al., 2003). An excess of ROS can in turn 
produce oxidative stress (Flora, 2011), proteotoxicity (Bolt, Zhao, Pacheco, & 
Klimecki, 2012; Stanhill et al., 2006), and initiation of apoptotic and necrosis 
cell death pathways (Bustamante, Nutt, Orrenius, & Gogvadze, 2005) and ini-
tiation of arsenic-induced carcinogenesis (Shi, Hudson, & Liu, 2004; Shi, Shi, 
& Liu, 2004). The combined effects of arsenic with other toxic elements such 
as gallium and indium in III–V semiconductors such as gallium arsenide and 
indium arsenide are discussed below.

1.4  Mercury
Mercury is a well-known toxic element that can exist in the 0, +1, or +2 oxida-
tion states and as a number of alkylated forms such as methylmercury, dimeth-
ylmercury, and ethylmercury and a number of ring structured forms (Clarkson 
& Magos, 2006), which vary in their uptake and distribution (Clarkson, Vyas, 
& Ballatori, 2007). Mercury is used in electronic devices such as flat panel tele-
visions and LCDs (Lim & Schoenung, 2010) and switches (Babu, Parande, & 
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Basha, 2007) and may be released as Hg0 vapor during the recycling process. 
This volatile form may contribute to both occupational exposures during recy-
cling and environmental exposures following microbial methylation reactions 
(Parks et al., 2013; Ullrich, Tanton, & Abdrashitova, 2001). Methylmercury is the 
chemical form of greatest environmental concern because of its ability to accu-
mulate in large predator fish species (García-Hernández et al., 2007; Hightower 
& Moore, 2003; Oken et al., 2003), which can hence lead to human exposures 
from this food source. The in vivo metabolism of organomercurials is complex 
and may involve both dealkylation reactions to form inorganic mercury (Suda, 
Suda, & Hirayama, 1993), which is a potent inducer of MT (Tandon, Singh, 
Prasad, & Mathur, 2001; Yasutake, Nakano, & Hirayama, 1998), and alkylation 
reactions mediated by bacterial flora in the microbiome (Betts, 2011; Podar 
et al., 2015), leading to the formation of methylmercury species. A major point 
to be noted here is that all of these chemical forms of mercury are toxic to 
biological systems to some degree. The mechanisms of mercurial toxicity are 
also complex since these agents may affect a number of essential subcellular 
systems including the mitochondria (Fowler & Woods, 1977; Lund, Miller, & 
Woods, 1991), protein synthetic machinery (Nakada, Nomoto, & Imura, 1980; 
Syversen, 1981; Verity, Brown, Cheung, & Czer, 1977), and cell death pathways 
(Shenker, Guo, & Shapiro, 1998). The alkylated forms of mercury are a partic-
ular problem because of their lipophilic nature and ability to cross cellular and 
intracellular membranes and penetrate virtually every compartment of the cell 
(Norseth & Brendeford, 1971).

1.5  Gallium
Gallium is a commonly used element in the production of electronic devices 
such as computer chips, cellular telephones, and light-emitting diodes (LEDs) 
(Fowler & Sexton, 2015; Moskalyk, 2003; Rajan & Jena, 2013), and it is recov-
ered as a by-product of aluminum and zinc smelting (Moskalyk, 2003). This 
element exists in the +3 oxidation state, and metabolism of gallium in vivo 
seems to be similar to that of iron since administration of gallium interferes 
with cellular uptake of iron (Seligman, Moran, Schleicher, & David Crawford, 
1992) and exerts toxicity by interference with cell cycle division processes 
(Rasey, Nelson, & Larson, 1981). The mechanisms of gallium toxicity are not 
well understood, but gallium toxicity induces a specific stress protein response 
that is different from arsenic or indium toxicity (Aoki, Lipsky, & Fowler, 1990) 
and includes heme oxygenase 1 and metallothionein-2A apparently via a 
mechanism involving initial formation of ROS (Yang & Chitambar, 2008). It 
is also used as an anticancer drug for this reason. This also means that this 
element, as a potent modulator of important cellular protective mechanisms 
such as the stress protein response, would have an impact on the stress pro-
tein response via concomitant exposure to other elements such as arsenic in 
gallium arsenide semiconductors (Fowler, Conner, & Yamauchi, 2005, 2008). 
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This type of interactive elemental information at a basic science level should be 
incorporated into all risk assessment analyses for semiconductor compounds 
containing these elements as discussed further below.

1.6  Indium
Indium is another toxic element that is used in a variety of high-speed elec-
tronic devices such as cell phones (Silveira, Fuchs, Pinheiro, Tanabe, & Bertuol, 
2015), computers (Virolainen, Ibana, & Paatero, 2011), solar cells (Hau, Yip, 
Zou, & Jen, 2009), and flat panel televisions (Yang, Retegan, & Ekberg, 2013). 
It is commonly employed in common with arsenic as indium arsenide (Milnes 
& Polyakov, 1993) or phosphorous as indium phosphide (Metzger, 1996). 
More recently, gallium indium (GaIn) liquid crystal alloys have permitted the 
development of soft stretchable electronics (Majidi, Kramer, & Wood, 2011; 
Tabatabai, Fassler, Usiak, & Majidi, 2013). The production of indium for elec-
tronic devices has increased greatly in the past decades and can be expected to 
increase as it is used in more types of electronic devices. This element is also 
highly toxic and capable of inhibiting protein synthesis (Aoki et al., 1990) 
via a mechanism linked to degranulation of the rough endoplasmic reticulum 
(Fowler, Kardish, & Woods, 1983) and induction of heme oxygenase (HO-1) 
(Woods, Carver, & Fowler, 1979). As with gallium toxicity noted above, such a 
compromise protein synthesis exacerbates the toxicity of arsenic or phospho-
rous by attenuating cellular defense mechanisms against ROS-induced damage 
to important cellular machinery (Fowler et al., 2005, 2008). Lung disease has 
also been reported (Tanaka et al., 2010) in workers producing indium phos-
phide–based flat panel televisions indicating the potential risk of this dis-
order in persons recycling these devices under less-than-safe work facilities. 
Indium has been classified as a probable human carcinogen (2A) by IARC 
(IARC, 2006). NTP chronic inhalation studies (Program, 2001) have reported 
an increased incidence of lung tumors in both male and female rats and mice. 
Other studies (Nagano et al., 2011) have also reported an increased incidence 
of lung tumors in male and female rats but not in mice although clear evidence 
of pulmonary disease was observed in both species.

1.7  Semiconductor Compounds
1.7.1  III–V Semiconductors
As noted above, a number of electronic devices utilize combinations of gallium, 
arsenic, and indium as III–V semiconductors to achieve more rapid electronic 
flows. Combinations of these elements are light emitting and are used to pro-
duce LEDs, which are used in a variety of common devices such as clock radios 
and instrumentation dials (Fowler & Sexton, 2015). It is important to note that 
respirable particles of such semiconductor compounds will undergo biological 
attack in the in vivo releasing gallium (Yamauchi, Takahashi, & Yamamura, 
1986), indium (Yamauchi, Takahashi, Yamamura, & Fowler, 1992), and arsenic 
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components. These elements are transported to distant tissues from the site of 
entry such as the lungs. The arsenic moiety is handled in a manner similar to 
As3+ and excreted in the urine as methylated species (Yamauchi et al., 1986, 
1992) following dissolution of the GaAs or InAs moiety.

1.7.1.1  Gallium Arsenide
GaAs, which is used in a variety of instruments including computers, cell 
phones, and LEDs, is the most well-studied III–V semiconductor with extensive 
in vivo animal (Goering, Maronpot, & Fowler, 1988; Program, 2000; Tanaka, 
2004; Webb, Wilson, & Carter, 1987) and in vitro study data (Burns, Sikorski, 
Saady, & Munson, 1991; Bustamante, Dock, Vahter, Fowler, & Orrenius, 1997; 
Sikorski, Burns, Stern, Luster, & Munson, 1991; Webb, Sipes, & Carter, 1984). 
The overall set of toxic effects seems to be a sum of both chemical toxicities 
from the Ga and As components following particle degradation in vivo and 
physical particulate effects that arise from exposure to GaAs particles them-
selves (Goering et al., 1988). Formation of ROS appears to be an important 
element in the toxicity of GaAs (Flora, Bhatt, & Mehta, 2009) (Fig 3.1).

1.7.1.2  Indium Arsenide
InAs is also a III–V semiconductor used in a variety of instruments but has a more 
limited database for both in vitro and in vivo toxicity studies (Bustamante et al., 
1997; Conner, Yamauchi, & Fowler, 1995; Omura et al., 2000). Experimental 
animal studies have shown that particles of respirable dimensions undergo 
biological attack and partial dissolution in vivo (Yamauchi et al., 1992), result-
ing in the release of In and As moieties in a manner similar to particles of 
GaAs. The relative acute toxicity of InAs seems to be greater than that of GaAs 
on an equivalent dose basis (Fowler et al., 2005, 2008). ROS formation also 
seems to be a key element in the toxicity of InAs with inhibition of stress pro-
tein synthesis as an exacerbating factor adding to overt cell injury/cell death 
processes (Bustamante et al., 1997).

1.7.1.3  Indium Phosphide
Indium phosphide (InP) is a III–V semiconductor similar to those above and 
is used in the production of instruments including flat panel television screens 
and solar cells (Li, Wanlass, Gessert, Emery, & Coutts, 1989). Interstitial lung 
disease has been reported in workers in plants manufacturing such devices 
and associated with serum indium concentrations (Chonan, Taguchi, & Omae, 
2007; Cummings et al., 2010). In Japanese workers, these lung effects were 
subsequently reported to occur in a dose-related manner with serum indium 
concentrations (Nakano et al., 2009). This material is highly toxic and has also 
been classified as a probable human carcinogen by IARC (2006) on the basis 
of in vivo animal (Program, 2001) and in vitro cellular studies (Bustamante 
et al., 1997; Tanaka et al., 1996). The mechanisms of toxicity are also linked to 
induction of cell death pathways such as apoptosis (Bustamante et al., 1997).
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1.7.2  II–VI Semiconductors
The II–VI semiconductors represent a second major class of semiconduc-
tors with a wide variety of applications in the electronic industry (Afzaal & 
O’Brien, 2006). Major representatives of this group include cadmium selenide 
(CdSe), cadmium sulfide (CdS), and cadmium telluride (CdTe). The toxicol-
ogy database on these materials is limited, but it is reasonable to assume that 
particles of these materials are handled in vivo in a manner similar to that 
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FIGURE 3.1
A global graphic from Fowler et al. (2005) showing intracellular handling and putative mechanisms of 
toxicity for galium (Ga), indium (In), and arsenic (As) species in a renal tubule cell following release from 
GaAs or InAs particles. See Fowler et al. (2005, 2008) for details.
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of the III–V semiconductors with both particle effects and biological attack 
releasing Cd2+ and Se and S and Te moieties; however, only limited data 
are available (Kirchner et al., 2005; Wang, Nagesha, Selvarasah, Dokmeci, & 
Carrier, 2008). In addition, nanoparticles of II–VI semiconductors including 
CdSe (Sun, Marx, & Greenham, 2003), CdS (Pardo-Yissar, Katz, Wasserman, 
& Willner, 2003), and CdTe (Kumar & Nann, 2004), among others, have also 
been formulated for a variety of new technological electronic devices such as 
solar cells (Kumar & Nann, 2004) that will eventually find their way into the 
e-waste stream.

1.7.2.1  Cadmium Selenide
Cadmium selenide (CdSe) is a major representative of the II–VI semiconductor 
group. This material is used in a variety of electronic devices including opto-
electronic devices such as blue-green emitters (LEDs), solar cells (Lee, Huang, 
& Chien, 2008), and infrared (IR) detectors (Li et al., 2005; Nozik et al., 2010; 
Steckel et al., 2006; Yan, Dadvand, Rosei, & Perepichka, 2010; Zhong, Zhou, 
Yang, Yang, & Li, 2007). The advent of CdSe nanomaterials further expands the 
possible uses of these binary compounds in more miniature electronic devices, 
which will invariably become part the e-waste stream.

1.7.2.2  Cadmium Sulfide
Cadmium sulfide (CdS), known as cadmium yellow, is a bright yellow pigment 
used in paints and printer inks (Ingrosso et al., 2009; Marjanovic et al., 2011). 
It has a number of optoelectronic applications (Agarwal & Lieber, 2006; Li 
et al., 2013). As with CdSe, it is also being incorporated into nanomaterials 
and hence into electronic devices that will enter the e-waste stream.

1.7.2.3  Cadmium Telluride
Cadmium telluride (CdTe) is mainly used in solar cells but also finds applica-
tion in IR detectors, radiation detectors, electrooptic modulators (Limousin, 
2003; Singh et al., 2004; Su et al., 2010). The recycling of electronic devices 
such as solar panels whose use is expanding in the global move toward “green 
energy production” will mean these materials will be entering the e-waste 
stream in greater quantities in coming decades (Green, Emery, Hishikawa, 
Warta, & Dunlop, 2015; Sites & Pan, 2007). CdTe nanoparticles are regarded 
as highly toxic (Cho et al., 2007; Zhang et al., 2007), and the mechanisms of 
toxicity seem to be linked to the physical properties of the particles and both 
the Cd and Te components (Cho et al., 2007; Su et al., 2010; Yan et al., 2011). 
A reasonable concern is that release of CdTe nanoparticles from solid-state 
materials such as solar panels that could occur during recycling could result in 
human exposures and subsequent toxicity. The development of nanomaterial 
forms of CdTe can hence be expected to increase bioavailability in both envi-
ronmental and occupational exposure terms.
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1.7.2.4  Chromium
This metal is found in floppy disks and CDs coated with chromium dioxide 
(Bhushan, Theunissen, & Li, 1997) and released during the recycling process 
by shredding or incineration. Chromate (Cr6+) has been identified as a known 
human carcinogen by the IARC (Boffetta, 1993).

2.  ORGANIC CHEMICALS
In addition to a number of toxic metallic compounds that produce both con-
ventional and nanomaterial exposures, electronic devices also contain a num-
ber of organic material components. Some of these materials may be released 
during the recycling process directly into soils in landfills or released into 
water bodies by runoff from landfills or by aersol exposures from incineration 
of plastic housings, insulation, or wire coatings (Leung, Cai, & Wong, 2006; 
Leung, Luksemburg, Wong, & Wong, 2007; Wong et al., 2007). Aerosolized 
chemicals may also be deposited over wide areas as a result of dry deposi-
tion or precipitation with rain (Tian et al., 2011; Zhang, Guan, Li, & Zeng, 
2009). Some of the persistent chemicals such as the polychlorinated biphenyls 
(PCBs), polybrominated diphenyl ethers (PBDEs) (Luo, Cai, & Wong, 2007), 
and polybrominated biphenyls (PBBs) may hence also accumulate in house 
dust (Wang et al., 2010), fish (Wu et al., 2008), and food crops (Liu et al., 2008; 
Zhao et al., 2009) in areas impacted by these processes. It is also important 
to note that these organic chemicals frequently occur as chemical mixtures 
(Frazzoli, Orisakwe, Dragone, & Mantovani, 2010; Robinson, 2009; Tsydenova 
& Bengtsson, 2011) both with other organic compounds and the metallic com-
pounds noted above. These combined mixture exposures and employment of 
child labor greatly complicate risk assessments for chemicals released from 
e-waste materials (Chan et al., 2007; Wang, Y., Luo, C. L., et al., 2011; Zhang 
et al., 2014; Zheng et al., 2013). The following discussion is a brief overview of 
some of the known representative types of organic chemicals associated with 
e-waste. This is likely not an all-inclusive list but will hopefully give the reader 
a sense of the general problem area and research needs going forward.

2.1  Styrene
Many electronic devices have plastic components such as composite housings, 
plastic keyboards, and circuit board frames. Ideally, these plastics may be broken 
up and recycled into new devices, but frequently this does occur efficiently, and 
these components may be discarded into landfills or incinerated (Wong et al., 
2007). This is frequently the case in developing countries (Nnorom & Osibanjo, 
2008). Styrene (acrylonitrile butadiene styrene and high-impact polystyrene) 
is among the major plastics in e-waste (Brennan, Isaac, & Arnold, 2002) with 
known toxicity and carcinogenic potential to organs such as the liver (Morgan 
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et al., 1993) and respiratory tract (Cruzan et al., 2002). Effects on reproductive 
organs such as the testicular cells have also been reported (Bjørge et al., 1996). 
This chemical is metabolized via the cytochrome P-450 system (Kim et al., 1997), 
and toxicity is mediated in part by further Phase II metabolism and conjugation 
with glutathione (Uusküla, Järventaus, Hirvonen, Sorsa, & Norppa, 1995).

2.2  Bisphenol A
Bisphenol A is another common organic chemical found in e-waste (Huang, 
Zhao, Liu, & Sun, 2014; Wang & Xu, 2014), which may also persist for pro-
longed periods in the environment (Huang et al., 2014). It is a known endo-
crine-disrupting chemical (Rubin, 2011), which has been associated with both 
reproductive disorders (Kandaraki et al., 2010; Takeuchi, Tsutsumi, Ikezuki, 
Takai, & Taketani, 2004) and altered glucose regulation (Ropero et al., 2008) 
and development of type II diabetes (Alonso-Magdalena, Quesada, & Nadal, 
2011; Magliano & Lyons, 2012; Sabanayagam, Teppala, & Shankar, 2013). This 
chemical is of major public health concern (Takayanagi et al., 2006) since it 
appears to be able to produce effects at relatively low exposure levels (Quesada 
et al., 2002) via interaction with hormonal receptors (Alonso-Magdalena, 
Morimoto, Ripoll, Fuentes, & Nadal, 2006). As discussed below, other endo-
crine-disrupting chemicals associated with e-waste (PCBs and dioxins) may 
also produce similar effects on glucose regulation leading to obesity and type II  
diabetes via interaction with the endocrine system (Ruiz, Perlina, Mumtaz, & 
Fowler, 2016).

2.3  Polychlorinated Biphenyls
PCBs are also known to be present in e-waste (Liu et al., 2008) and to be found 
at elevated concentrations in air, water, soils, plants, various types of foods, 
birds, and local residents living near the recycling facility (Luo et al., 2008) in 
areas near e-waste recycling sites in China (Han et al., 2010; Liu et al., 2008; 
Luo et al., 2011; Shen et al., 2009; Wang et al., 2012; Zhao et al., 2010). These 
chemicals are known to induce proliferation of smooth endoplasmic reticu-
lum, induce cytochrome P-450 enzyme activities, and produce hepatotoxic 
effects (Kasza et al., 1977).

2.4  Polybrominated Biphenyls/Polybrominated Diphenyl 
Ethers

PBBs and PBDEs are common chemicals used as flame retardants in electronic 
equipment, and like many halogenated chemicals, they are persistent in the 
environment and may accumulate in fish (Luo et al., 2007), birds (Luo, Liu, 
et al., 2009), and crops (Wang, Y., Luo, C., et al., 2011) grown in soils (Luo, 
Luo, et al., 2009) contaminated with them from landfill or aerosol deposition 
(Chen et al., 2009). These chemicals produce hepatotoxic and biochemical 
effects similar to the PCBs as noted above (Kasza et al., 1977).
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2.5  Dibenzo Dioxins and Dibenzo Furans
Dibenzo dioxins (DBDs) and dibenzo furans (DBFs) are structurally simi-
lar compounds, which have been extensively studied with regard to toxicity 
and carcinogenicity and as endocrine disrupting agents (Birnbaum, Staskal, 
& Diliberto, 2003; Van den Berg et al., 2006). Tetrachloro dibenzo dioxin 
(TCDD) is regarded as among the most toxic man-made chemicals known 
(Mukerjee, 1998). The DBDs and DBFs are known to be generated by com-
bustion of printed circuit boards (Duan, Li, Liu, Yamazaki, & Jiang, 2011) and 
removal of polyvinyl chloride insulation from copper wiring by open-pit burn-
ing (Man, Naidu, & Wong, 2013; Ren, Tang, Peng, & Cai, 2015).

2.6  Chemical Mixtures and Incineration of Combustion 
Products

It should be noted that the above short list of chemicals is not inclusive and 
represents only some of the major toxic organic agents known to be present in 
the e-waste stream. This list of chemicals does, however, illustrate the need for 
considering the issue of chemical mixtures in performing risk assessments on 
e-waste recycling sites since exposure to these chemicals as mixtures is the most 
common scenario. In addition, there is need to consider combustion products of 
these agents from open-pit burning. Presently, the number and types of chemical 
combustion products that would be generated during incineration of e-waste, 
with the exception of TCDD and BPA, are presently poorly characterized. This 
is an area of much needed research since it is possible that these incineration 
by-products (e.g., TCDD and BPA) are also highly toxic and/or carcinogenic. 
Exposures of persons tending open-pit burn sites or in local communities is a 
cause for concern. This is particularly true for children who may experience such 
chemical exposures early in life and develop chronic diseases or cancer as they 
become adults (Birnbaum & Fenton, 2003). Hazard characterization is an essen-
tial first step in conducting a credible risk assessment and of particular impor-
tance in dealing with a complex situation detailed in this book for e-waste.
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